
‭Metamask Integration Delivery Report‬
‭During the event, we were able to implement and complete all the milestones described‬
‭in the proposal with some interesting and unexpected challenges.‬

‭We believe that this project can significantly improve the user experience for‬
‭cross-chain activities such as atomic swaps and bridging by allowing the user to interact‬
‭with both chains using a single wallet.‬

‭Delivers‬
‭●‬ ‭Metamask Snap integration module with HD key derivation and transaction‬

‭signing capabilities exposed through an RPC API which allows for dApp‬
‭interactions similarly to EIP-12 API (dApp Connector).‬

‭●‬ ‭Wallet management UI.‬

‭Challenges‬
‭●‬ ‭Prover implementation‬‭: During the implementation, we realized that we couldn't‬

‭use libraries such as sigma-rust and Sigma.JS due to the restrictions imposed by‬
‭the Metamak plugin execution environment. To overcome this, we had to‬
‭implement the Ergo's Schnorr signature scheme in pure JavaScript, which was‬
‭successfully accomplished and gave us a better understanding of how Schnorr‬
‭signatures work.‬

‭●‬ ‭Privacy and blocking concerns‬‭: Community discussions about Metamask's‬
‭questionable privacy and transaction blocking practices have led us to change‬
‭the integration module to act solely as an offline key deriver and signer module‬
‭(something closer to what hardware wallets do), thus improving privacy and‬
‭preventing transaction blocking by avoiding internet connections. This comes‬
‭with a drawback though, all the work of fetching inputs and broadcasting‬
‭transactions must be done on the dApp side, to address this we are producing a‬
‭library to make it as easy to use as the EIP-12 API.‬

‭Next Steps‬
‭●‬ ‭Improve the user experience on the UI‬
‭●‬ ‭Produce a dApp <> Wallet integration library that abstracts away all the‬

‭complexities of the RPC protocol.‬


