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Abstract. Proof-of-work (PoW) based consensus protocols rely on the process
of "mining" to secure their blockchain. Although mining is a crucial process for
the security of such blockchains, there are few ways to trustlessly and efficiently
calculate the amount of work a miner has performed. Such an ability would
allow for the creation of decentralized mining pools, along with other processes
integrating mining into on-chain protocols. In this work, we construct a new
primitive known as a Succinct Non-Interactive Share Proof (SNISP) which al-
lows for efficient calculation of a miner’s work. Our construction functions
using a worst-case constant space complexity, regardless of the total number of
shares of work that a miner submits. We pull heavy inspiration from previous
works on Non-Interactive Proofs of Proof of Work (NiPoPoWs).
Using SNISPs, one can prove that a miner performed work using smart con-
tracts on programmable blockchains such as Ergo and Alephium. Moreover, we
show that our construction is blockchain agnostic, meaning it may even be used
to prove work was performed on non-programmable PoW blockchains such as
Bitcoin and Flux. We later show how our construction may be applied to differ-
ent decentralized applications, outside of decentralized mining pools.

1. Introduction
PoW-based blockchains such as Bitcoin and Ergo use the process of mining to ensure
security, as well as being the point of creation for new tokens to become liquid on their
ledgers. Mining is the constant application of hash functions to block candidates in order
to randomly find new block solutions which may then be placed onto the blockchain.
Miners who place valid blocks onto the chain are then rewarded with some amount of
the blockchains native asset as an incentive to further secure the blockchain. The random
nature of mining means that miners with less powerful hardware are unable to use it alone
as a steady source of income.

To combat the instability of miner rewards, especially for miners with less power-
ful hardware, mining pools have been made to concentrate the hashing power of multiple
miners in order to find blocks and their rewards quicker. Most mining pools however, are
centralized in nature, and require clear trust in the operators of such pools. Moreover,
mining pools represent a point of centralization within the blockchain, and allow for op-
erators to potentially attack the protocol for their own benefit. In fact, there exist multiple
instances of mining pools using their concentrated hash power to perform 51% attacks
and jeopardize the security of the chain.

Decentralized mining pools offer a solution to the above problems. Decentralized
mining pools allow for trustless distribution of miner rewards to the miners participating
in the pool. Some examples include P2Pool, which uses it’s own sidechain to record the



amount of work each miner has performed. P2Pool however, can be shown to be insecure
due to its vulnerability to 51% attacks. Its security is therefore limited by the total hashrate
present on the pool itself.

Another example of a decentralized mining pool is SmartPool, a protocol using
smart contracts on the Ethereum blockchain to provide more security than a sidechain
like P2Pool. By leveraging smart contracts, SmartPool is able to inherit the security of
the Ethereum blockchain itself. The problem with SmartPool is its inability to scale,
specifically that its protocol is interactive in nature. Ethereum itself has had many in-
stances of significantly high gas fees, meaning that an interactive protocol would require
miners to submit multiple transactions and therefore cannibalize their own rewards due to
the transaction fees that must be paid.

Our motivation for research into SNISPs is to create an efficient and secure decen-
tralized mining pool, which is able to trustlessly verify the amount of work a miner has
performed. By using SNISPs, we eliminate the need for trusted operators which may be
able to steal miner rewards or potentially perform 51% attacks on their blockchain.

We wish to target three key properties pertaining to our SNISP construction, to
ensure its efficiency when used in the context of a smart-contract based decentralized
mining pool:

1. SNISPs should be sufficiently succinct. Specifically, we require a worst-case
space complexity that is constant, so as to allow easy evaluation of proofs on
the blockchain.

2. Proofs must be submitted and evaluated in a non-interactive protocol, so as to
minimize the number of transactions needed to be sent by miners.

3. Block-to-block variability in rewards should be minimized, and two miners with
the same hashrate should receive similar rewards.

2. Background
Before delving into SNISPs, we would like to briefly explain the processes behind PoW
mining, along with how mining pools work, and common terms used in this area of re-
search. Later, we explain algorithms used by traditional blockchains to evaluate work via
share submissions.

To begin, we start with the PoW process that is used by many blockchains today.
PoW blockchains define a certain target T , a hash function H and some value w which
is derived from a potential block candidate. Valid solutions must satisfy the inequality
H(w) < T in order to be accepted onto the blockchain. To efficiently satisfy this inequal-
ity, miners must constantly apply H to different values of w until a solution is found. It
should be noted that the target may sometimes be represented as difficulty, which is just
the average number of hashes needed to find a block at a certain target.

The rate at which H may be applied to w is known as a miner’s hashrate. Hashrate
is limited by the physical computation power of a miner’s hardware, and so cannot be ar-
tificially increased. Miners with higher hashrates may perform more computations in the
same amount of time compared to miners with lower hashrates. Hashrate is therefore di-
rectly related to the chances of a miner satisfying the inequality and submitting a solution
onto the blockchain within a certain amount of time.



Due to the random nature of PoW mining, as well as the constant adjustment of
T in order to reach stable average block times, miners with lower hashrates are unable to
consistently find blocks in a short time span. To solve this problem, mining pools have
been created to combine the resources of multiple miners in order to find blocks quicker.
Mining pools then distribute these block rewards to miners proportionally according to
the amount of work each miner performed while searching for solutions. In traditional
mining pools, each miner’s work is measured using shares, which are applications of H
which do not satisfy the inequality given by the blockchain. Shares instead satisfy the
inequality H(w) < Tp, where Tp is a special target set by the mining pool such that
Tp > T .

2.1. Share Processing

Shares are constantly being submitted by miners on pools in order to prove that valid
work was performed by them. These shares are then incorporated into different share
processing algorithms which output a number which shall now be referred to as the share
score. The share score provides a simple scalar value which allows the pool to derive
miner payouts by taking the proportion of the miner’s share score to the share score of the
entire pool.

One common share processing algorithm is known as the Pay-Per-Share algorithm
(PPS). The PPS algorithm pays miners proportionally according to the number of shares
they submitted divided by the pool target Tp. Specifically, we define the equation s =
N/Tp where s represents a miner’s share score, N represents the number of valid shares
submitted by the miners, and Tp represents the pool target given to the miner by the pool.
Although in many cases Tp may be a constant set by the pool, some pools incorporate
"variable difficulty" mining to allow for efficient share submissions that lower network
load. We have included Tp into the equation to show that miners working on shares with
a lower target are given a higher score per share submission.

The PPS algorithm is used by many mining pools today. However, one strict
disadvantage of it is that the algorithm is susceptible to pool hopping attacks. To prevent
such attacks, alternative algorithms such as Pay-Per-Last-N-Shares (PPLNS) and Pay-Per-
Last-N-Timeshares (PPLNT) are used. These algorithms both work using some window
W in which submitted shares may be used in processing. For the PPLNS algorithm, W
is a constant value representing the last N shares submitted to the pool before a certain
block was found. In PPLNT, W is a set period of time before a certain block is found. In
both of these algorithms, shares must be within W in order to be processed into a share
score by the algorithm. A miner’s share score for both of these algorithms can be derived
by the equation s = NW/Tp, where NW represents the miner’s shares present within the
window.

3. Initial Construction

It is apparent from the above share processing algorithms that share scores are usually
some proportion of the number of shares divided by the pool target. Although this works
well for traditional mining pools, such an equation would struggle to work in a decen-
tralized setting. For one, data storage is limited on programmable blockchains, having
a miner submit the total number of shares created while mining is unviable. High target



shares could easily become hundreds of thousands of bytes of data to parse. On the other
hand, submitting a small amount of low target shares can mean large variability in profits,
which would defeat the purpose of the mining pool itself.

To create functional and secure SNISPs, we must look to other places to draw
inspiration from. Specifically, let us analyze NiPoPoWs as proofs that achieve similar
levels of succinctness and security in PoW blockchains.

3.1. NiPoPoW Background

Non-interactive Proofs-of-Proof-of-Work represent succinct proofs that may be gener-
ated from certain PoW blockchains, and which may prove various predicates about the
blockchain itself. NiPoPoWs function by using blocks with especially low targets (called
super-blocks) as checkpoints to show that work was done on the blockchain. Specifically,
these proofs focus on the property of goodness, which is the tendency of block hashes on
an honestly-mined blockchain to follow a binomial distribution in relation to their diffi-
culty. Generally, the distribution of super-blocks must be sufficiently good for a NiPoPoW
to be considered valid. In the case of a malicious adversary, "certificates of badness" may
be used to justify why a certain NiPoPoW may lack goodness.

Although the problems that NiPoPoWs attempt to solve may differ from our own
goals with SNISPs, it is evident that the properties of PoW that are used in the prior setting
can also apply to our own. Specifically, we can see that:

1. PoW blockchains and PoW Mining Pools both have a threshold target for valid
hashes.

2. Mining pools operating on a certain blockchain must ensure their miners use the
hashing function H in order to create valid block solutions.

3. Applying H to w ideally produces a random value
4. Each iteration of a unique nonce over H can be considered an independent Bernoulli

Trial, regardless of the threshold target used.

Given these properties, and in order to ensure the succinctness of our share proofs,
we shall focus our attention onto goodness. Specifically, we wish to evaluate a set of
shares based on how good the set is, and whether or not it constitutes a valid, target-based
binomial distribution.

Evaluating goodness in the context of a decentralized mining pool is actually more
secure than on a blockchain. Attempts to attack goodness on NiPoPoWs all require an
adversary who is withholding super-blocks and making the blockchain inherently bad,
i.e, not good. No such problem exists here, as each miner is submitting their own set of
hashes that they independently computed while performing work. Moreover, Lemmas 2 -
5 prove that an honest miner has an overwhelming probability of creating a set of hashes
which are good.

With this in mind, we propose a share proof that is evaluating a miner’s work based
on the goodness of their share set, rather than the number of shares submitted. Moreover,
we shall ensure succinctness by extending the concept of super-blocks to super-shares,
which shall represent shares whose value is sufficiently lower than the threshold target
given by the pool. We’ll similarly use the idea of levels to represent subsets of super-
shares.



3.2. Model

For clarity, we will now describe our model for miners performing PoW mining on a
decentralized mining pool. To begin, we assume that all actors in our mining pool are
rational. Miners on the pool are constantly mining, and all miner’s are assumed to have
stable hashrates with few fluctuations. Everytime a block is found by a member of the
pool, all miners in the pool must submit a share proof to a smart contract which then
evaluates the proof. Each new block find on the pool constitutes a new round in our
protocol. Each miner is therefore a prover, while our ideal smart contract is a verifier
which is independently validating the share proofs given to it. If a miner’s share proof is
considered invalid, they gain no reward for the work they performed.

All miners in the pool are producing shares with a personal maximum target τ . τ
can be seen as the threshold that divides hashes from shares, similar to how the blockchain
target T divides hashes from blocks. For a hash to be considered a share, it must satisfy
the inequality H(w) < τ . Shares created in this way are constantly being placed into
some share set S. Upon the start of a new round, miners will submit some share proof
P to the verifier in order to receive their mining rewards. The value of τ is set by each
miner as they see fit, and is submitted in conjunction with P . P itself simply represents
a collection of super-shares derived from S. In order to ensure consistency of mining
rewards, we propose that in an ideal scenario, two miners mining with the same hashrate
should each have equal values of τ submitted with their share proofs.

We shall adapt the idea of super-shares so that Si represents all super-shares at
level i in the share set S. In our model, miners will be aiming to prove that they performed
the work of creating N shares whose hash value is less than the target τ . We define a level
i to be a subset of shares in S such that for each share s in Si, the value of s conforms to
the inequality s < τ × (i/N). In addition, the shares submitted in P must be made within
some window of time W seconds before the end of the round. The addition of W ensures
that miners may not submit old share proofs that have no relevance to the work currently
being performed by the pool.

In order to ensure the succinctness of our share proofs, we will use a security
parameter µ, which represents the maximum number of shares which may be present in
the share proof. W , µ and N will be global parameters that all miners in the pool must
follow.

For a share proof P to be considered valid, the number of shares present in the
proof must be less than or equal to µ. In addition, P may only be considered valid if
all shares present in the proof are at some constant level i. To ensure that goodness is
achieved, a proof P at level i must have exactly i shares inside of it. These constraints
mean that the maximum size of a proof P is µ shares, and that the maximum target for
each share in a proof of length µ is τ × (µ/N). They also show that µ acts not only as a
security parameter ensuring succinctness, but also as the maximum level of shares that a
miner may submit.

We can now finally say that the goal of each miner on the pool is to mine N shares
and place them into the share set S. Upon the end of a round, miners will find the best
subset of super-shares in S, and form the proof P . For P to be valid, each super-share s
in a proof of length i must satisfy the inequality s < τ × (i/N). To ensure succinctness,



we constrain i to the domain 1 ≤ i ≤ µ. We can therefore say that miners here must only
prove goodness at a single level i in the entire share set S in order to have a valid proof.
Finally, we add the constraint that each share s must have been made within a window of
time W seconds before the end of the round.

3.3. Evaluation
From the above construction, we can see that goodness of the share set is evaluated by
having a miner submit a set of sufficiently low target super-shares which are all existing
at some level i where 1 ≤ i ≤ µ. It is also apparent that our share proofs have an O(1)
space complexity, due to the limit on data size that µ is enforcing. It is clear then that
this model is able to achieve both succinctness and proper evaluation of goodness. As
one final addition, we shall create a method to convert our share proofs into share scores
which may be used to award miners proportions of the block reward. The equation to
find a miner’s share score given a valid share proof is simply 2256/τ . The constant 2256

is derived from the maximum value of a 256-bit hash (which blockchains such as Bitcoin
and Ergo employ in their PoW algorithms). Keen observers may notice that this in fact
the equation to calculate difficulty, which can be considered a different representation than
the target. We use difficulty here for it’s cleaner representation of the target. We omit N
unlike previous share score equations, due to N being a protocol-wide constant.

As shown above, the most important variable affecting a miner’s reward is τ . Al-
though this initial model correctly evaluates whether or not an honest miner is performing
work with a share target threshold at τ , there is an issue here which jeopardizes the con-
sistency of payouts. Because τ is submitted in addition to P , adversarial miners may
simply use their lowest target hash to represent P . Accordingly, these adversaries may
then adjust τ so as to satisfy the above goodness constraints, while still earning more than
honest miners working at the same hashrate as them. In this way, dynamic adjustment
of τ after the end of a round allows two miners with the same hashrate to obtain wildly
different payouts. We will henceforth refer to attacks of this nature as target adjustment
attacks.

4. Optimizing τ

In this section, we aim to append our initial construction so as to make it resistant to
adversaries aiming to maximize profits via target adjustment attacks. Specifically, we can
add a simple change which prevents adjustment of τ after a round ends. To achieve this
goal, we now require that all miners on the pool must make an initial commitment to τ ,
such that the τ submitted with P must remain constant for some minimum number of
rounds r. Each time a miner wishes to change their value of τ , they must wait at least one
round for their update to take affect. In addition, every update to τ requires that a miner
must wait r rounds before submitting a new commitment to their τ value. In the context
of a smart-contract verifier, miners will be making a cryptographic commitment to their
value of τ via a pool-wide authenticated dictionary, such as an AVL+ tree.

The affects of this change are plain to see, miners can no longer freely adjust τ to
maximize rewards based on their lowest target shares. Instead, miners now receive share
scores based on their commitment for at least r + 1 rounds before being able to change
their τ value. Let us now analyze how our appended construction functions when a miner
with some arbitrary, stable hashrate commits to different values of τ .



4.1. Idealized τ

We first propose that for any hashrate h, there exists a corresponding value of τ which
will on average produce N shares within the window of time W . This ties back into
our previous statement that two miners with the same hashrate will ideally have equal
values of τ . For a miner who has committed to their ideal τ , we theorize that the miner
is exceedingly likely to produce a valid proof. We base this claim using the fact that an
honest miner’s share set is overwhelmingly likely to follow a binomial distribution. We
also propose that the calculation for the ideal τ , τideal, should be τideal = (2256×N)/(h×
W )

4.2. Inflated τ

We define an inflated τ value to be any value of τ which is deviating above a miner’s
ideal τ . Miners who commit to inflated τ values are, on average, producing more than N
shares every round. We argue that there is no incentive for rational miners to commit to
an inflated τ value. Given that share scores are calculated via the equation 2256/τ , any
miner who commits to an inflated τ value is receiving a smaller share score than other
miners in the pool who have the same hashrate. It should also be known that as τ deviates
higher from its ideal value, a miner is increasingly likely to create a good and valid share
proof, even more so than miners using their ideal τ .

4.3. Deflated τ

We define a deflated τ value to be any value of τ which is deviating below a miner’s ideal
τ . Miners who commit to deflated τ values are, on average, producing less than N shares
every round. Commitment to such a τ value increases a miners expected share score,
however, it also increases the likelihood that a miner is unable to produce a valid share
proof for a given round. We base this claim again on the fact that S represents a binomial
distribution, and that there is a real hardware-based limit on the number of hashes a miner
may produce within the window.

First, let us remember that each hash produced by a miner represents an inde-
pendent Bernoulli trial, and that decreasing the target also decreases the probability that
any given hash satisfies the SNISP inequality. Given that the total number of hashes a
miner may produce in the window is a constant value, we can see that the only result of
a miner deflating their τ is reduced probability of creating a valid share proof in a single
round. We therefore argue that there is little incentive for rational miners to deflate their
τ value. Mining pools are created in order to deliver consistent payouts to miners. By
setting τ lower than its ideal value, miners are needlessly increasing payout variability,
which therefore defeats the purpose of pool mining itself.

Although miners have no incentive to commit to significant deviations from their
ideal τ , there may be some miners who make small adjustments according to their per-
sonal risk-reward ratio. Such changes have little affect on other miners, and can instead
be seen as a benefit of the protocol by placing more power into the hands of miners.

5. Concrete Example
From our analysis, we can see that rational miners are likely to be mining at or near their
ideal τ value. With this, we have achieved our goals of succinctness, and consistency



of miner rewards. It can be argued that non-interactivity has been violated by requiring
that miners commit to their value of τ . However, given that miners are operating under
the assumptions of stable hashrates, and that the parameter r limits the number of times
τ may be changed, rational miners are unlikely to change their τ value often. We can
therefore say that our proofs are non-interactive for all rounds after the initial ideal τ
value is committed to. Now, we will go into an example with set parameters to provide a
clearer explanation of the protocol.

Let’s imagine a decentralized SNISP pool, which is operating with the parameters
N = 10000, µ = 20, W = 3600 seconds, and r = 10. A new miner, with a consistent
hashrate h of 500 MH/s wishes to join the pool. First, the miner must calculate their
ideal τ and submit it to the pool smart contract. We can calculate the ideal τ by finding
the number of expected hashes within the window, dividing it by N , and multiplying it’s
inverse by 2256, which is the maximum value for a 256-bit hash (Used by Bitcoin, Ergo,
and other blockchains).

Our miner is creating 5× 108 hashes every second. Within the window, the miner
is expected to create a total of h×W or 1.8× 1012 hashes. We can then say that for our
miner, τideal = (2256×10000)/(1.8×1012), or 6.4328938×1068. The share score (which
may also be seen as a miner’s threshold difficulty) received for mining at this τ can simply
be expressed as 180M or 1.8× 108.

As stated in our model, for a share proof of level i, a miner must submit exactly i
shares within P such that each share s satisfies the inequality s < τ × (i/N). Given these
parameters, valid share proofs would include 1 share with value s < (τ/10000), 2 shares
with values s < (τ/5000), and 3 shares with values s < (τ/3333). For the maximum size
share proof of length µ, 20 shares must satisfy the inequality s < (τ/500).

Given that the domain of i is constrained to the values 1 ≤ i ≤ µ, we can de-
termine both the best and worst case data size for our SNISPs. Let us assume that our
current SNISP pool is mining blocks on the Ergo blockchain. For verification of shares,
we will assume that each share is holding only a block header, along with its hash derived
from Ergo’s PoW algorithm. The size of a standard Ergo header is 283 bytes, and Ergo
uses 32 byte hashes. Therefore, each share will be 305 bytes in total. The minimum valid
share proof size will be 305 bytes for 1 share whose hash value is greater than τ/10000,
while the maximum size will be 6100 bytes for 20 shares greater than τ/500.

6. Empirical Data
We collected data from a single trial in order to perform tests on the viability of the SNISP
construction. Our trial involved the usage of a single miner, mining at a steady value of
61.21 MH/s for exactly one hour on Ergo’s testnet. We were able to save data on 2349
potential shares, whose difficulty values were greater than 72M. We then applied filters on
this data set in order to find shares which satisfied the inequality H(w) < τ for different
values of τ .

6.1. Test 1
Our first test involved using the values W = 3600, and N = 1000 over the dataset. Using
these parameters, we calculated the τideal to be τideal = (2256 × 1000)/(62.21 × 109 ×
3600) = 5.2547736044 × 1068. This is equivalent to a difficulty value of 220.356M. We



then rated the viability of different τ values by calculating the number of levels for which
a valid share proof could be made using that τ . Our calculations used a constant value of
µ = 20, meaning a maximum rating of 20. We chose this rating system to be able to see
how different values of τ affect the number of valid share proofs that could be generated.

Table 1
τ Valid Proofs

2.0× τideal 20
1.75× τideal 20
1.25× τideal 20
1.0× τideal 11
0.75× τideal 8
0.5× τideal 2
0.25× τideal 0

From the data, we were able to see that inflated values of τ always had valid share
proofs associated with them. On the other hand, deflated values of τ were less likely to
have valid proofs for different levels, with the most deflated value being unable to provide
a valid proof at all.

6.2. Test 2
Our second test involved dividing our sample set into discrete time increments based on
the timestamp available on each share. We broke up our sample set into 12 intervals of
5 minutes, such that W = 300. We set N = 200, and calculated the τideal to equal
6.3057283253× 1068 or a difficulty of 183.63M. We then calculated whether or not each
of these trials held at least one valid share proof. This was done in order to simulate
whether or not the miner would get paid for the work performed during that trial.

Table 2
Trial Window ≥ 1 Valid Proof for τideal

00:00 - 00:05 true
00:05 - 00:10 true
00:10 - 00:15 true
00:15 - 00:20 true
00:20 - 00:25 true
00:25 - 00:30 true
00:30 - 00:35 false
00:35 - 00:40 false
00:40 - 00:45 true
00:45 - 00:50 true
00:50 - 00:55 true
00:55 - 01:00 true

In total, 83% of the trials held valid proofs, lending credence to the idea that the
ideal τ was the best value to balance profitability with relative consistency in terms of
payouts. Although these tests were limited in nature, we hope that they provide merit to
the SNISP construction we have provided, and that future works delve deeper into the
statistics behind SNISPs.



7. Applications
The most obvious and discussed application of SNISPs is their usage in decentralized
mining pools. For a smart contract based mining pool, SNISPs allow calculation of a
miner’s work into a single share score, which can then be used to derive each miners re-
ward proportional to the amount of work the miner did. There could be multiple designs
for SNISP pools which each have their own benefits and drawbacks. One design of inter-
est may be the usage of an optimistic rollup, which could have great scalability benefits.
Assuming miners are honest and using fraud proofs in order to prove them wrong would
allow for less computation on the blockchain, and would ensure that a SNISP-based pool
can scale to thousands of users. Such a method would be impossible using past decentral-
ized mining protocols such as SmartPool and P2Pool.

Because SNISPs are based on the standard PoW inequality used by blockchains
and mining pools, SNISP pools may be deployed for any standard PoW-based blockchain.
One caveat is that although SNISPs can be used for any blockchain, they must be de-
ployed in smart contracts to ensure full security guarantees. SNISP-based pools may
therefore be created on blockchains such as Ergo and Alephium, both of which repre-
sent programmable PoW blockchains. Pools on these blockchains may then service other
PoW blockchains which lack programmability. For example, a SNISP pool on Ergo could
potentially serve as a decentralized Bitcoin or Flux mining pool. The integration of the
standard PoW inequality ensures that SNISPs remain blockchain agnostic.

Another potential idea may involve the creation of SNISPs which use a different
share calculation algorithm. The SNISPs presented in this paper most closely resemble
the PPLNT share processing algorithm, however application of SNISPs into algorithms
like PPS may also be interesting. SNISP protocols may also be allowed to have different
verification algorithms which have different requirements. For example, a stricter pro-
tocol could require goodness be maintained at multiple levels, rather than just one. A
more lax protocol may conversely reward miners who provide partial share proofs. Such
a protocol could designate proportional share scores based on how good the partial share
proof is compared to a completely valid proof.

Finally, more research into finding values for τideal may be necessary. One infor-
mal trial we ran on an Ergo miner found that adjusting for the table set generation length
used in the Autolykos 2 PoW algorithm allowed for more successful proof generation.
Every time a new block is found on the Ergo blockchain, Autolykos miners must stop
hashing and regenerate the table for some period of time. Our miner’s tableset generation
length had a mean and median value of 4.57 seconds. This proved to have significant
implications on the ideal τ , especially because the testing network had a 45 second block
time.

Other usages of SNISPs may involve smart-contract based lending of hashrate
and direct work-based governance on decentralized applications. In reality, any applica-
tion which provides the right incentive structures and incorporates work can use SNISPs
within their their protocol.
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