
ErgoHack 3 Project Report
GuapSwap Team

Description
This is a report documenting our progress for the GuapSwap project during ErgoHack 3. We
describe the relevant sections of the code base that we have implemented thus far. We include
the UI mockup, a Todo list of items we have not completed but will in the future, and a product
comparison showcasing their pros and cons with respect to GuapSwap.

Links
GitHub: https://github.com/GuapSwap/guapswap/tree/v0.1.0
Twitter: https://twitter.com/GuapSwapErgo
Email: guapswap@protonmail.com

https://github.com/GuapSwap/guapswap/tree/v0.1.0
https://twitter.com/GuapSwapErgo
mailto:guapswap@protonmail.com


Documentation

User Settings
In order to determine the node settings and the parameter settings that are specific to the
GuapSwap protocol and ErgoDex, the user will need to modify a file called
guapswap_config.json shown below. We use these variables throughout the program, which are
stored in an object called GuapSwapConfig



Commands
The commands used to interact with the program include the following:

$ guapswap generate
- generate proxy address from guapswap_setting.json

$ guapswap swap <proxy_address>
- loops indefinitely and queries blockchain once every 60 min to check for a payout and

performs the swap automatically.
$ guapswap swap <proxy_address> [–onetime]

- perform a one time swap with all utxo at this address
$ guapswap refund <proxy_address>

- refund all utxo at this address to miner
$ guapswap list <proxy_address>

- list all utxo with given proxy address
$ guapswap log

- show error logs of program
$ guapswap exit

- terminate program

Unfortunately, we ran out of time and were not able to implement these functions. However, in
order to help with creating the Scala CLI in the future, we found a third-party library called
decline: https://github.com/bkirwi/decline

Contracts

GuapSwapErgoDexSwapSellProxyContract
This is the proxy contract that is compiled and generated for the user, which they subsequently
provide to a mining pool of their choice. Their payouts will be sent to this address. The contract
script can be seen in our GitHub repository here:

https://github.com/GuapSwap/guapswap/blob/v0.1.0/src/main/scala/contracts/GuapSwapErgoD
exSwapSellProxyContract.scala

GuapSwapServiceFeeContract
This service fee charged by the GuapSwap protocol will be sent to this contract. In order to
spend the funds, a threshold amount will need to be met and locked funds will be split amongst
the team members. Unfortunately, we have not implemented this contract yet.

https://github.com/bkirwi/decline
https://github.com/GuapSwap/guapswap/blob/v0.1.0/src/main/scala/contracts/GuapSwapErgoDexSwapSellProxyContract.scala
https://github.com/GuapSwap/guapswap/blob/v0.1.0/src/main/scala/contracts/GuapSwapErgoDexSwapSellProxyContract.scala


ErgoDexSwapSellParams
These are the parameters necessary to perform the swap with ErgoDex. These are provided to
the proxy contract as Context Variables. The proxy contract uses these variables to substitute
the constants in the ErgoDex swap-sell contract, whose proposition bytes are provided to the
proxy as a hard-coded constant. The substitution occuring within the proxy contract is compared
to the substitution done outside the contract, and the two scripts are compared as a spending
condition for a valid ErgoDex swap box output.



UI Layout Mockup

Steps
1. User inputs the public key manually or connects the wallet.

2. User is presented with a dashboard showing following information:
- “Create New Address” button
- Already generated addresses(if any)
- Slippage rates for already generated addresses
- Total Ergo paid to each address
- Total tokens paid out to wallet from each address



3. User selects the “Create New Address” option.
4. User selects the payout token they want and the slippage tolerance.

5. The user is presented with the proxy contract address which they can paste into their
mining software.

6. User is redirected back to the dashboard now showing the newly generated address.



Todo
● Implement commands
● Write Service Fee contract
● ErgoSript contract review/audit
● Running a v0.1.0 on testnet or mainnet, whichever has the execution bots running.



Product Comparison
When looking at comparable products we have to keep in mind that GuapSwap is the first
product to offer any mining payout swapping service on the Ergo Blockchain. With that in mind
we can look at three other products that have similar functions and provide swapping for mining
payouts.

GuapSwap
GuapSwap is a fully decentralized smart contract profit swapping service on the Ergo
Blockchain. To use GwapSwap the client either interacts with GwapSwaps UI to generate a
proxy contract address for payouts or they run the CLI on a personal node. This allows any
mining pool to be used for payouts. After a pool pays out to the proxy contract address it will be
automatically swapped for the token the client chose through ErgoDex and deposited in the
client's wallet.

Pros:
● Fully decentralized, does not interact with any CEX.
● Much faster clearance of swaps by using a dex.
● Reduces taxable events for clients.
● Fully transparent swapping method.
● First smart contract miner profit swapping expediter.
● Interacts with any Ergo Pool allowing clients to use their favorite pool and interface to

track mining rewards.

Cons:
● Adds another step to the mining process by interacting with the proxy contract.
● Additional fees



UnMinable (Multicoin)
UnMinable is a fully centralized mining service, they even offer their own mining software to use
with their pool. Their swapping service works like this, a miner will download UnMinables .exe
and run it, picking a payout coin or token from their provided list of options. After choosing a
coin they enter their wallet address they choose from the available algorithms they can mine
and hit the start button. When the miner reaches their payout threshold they can request a
payout on UnMinables website. All this is made possible by unmineable swapping coins on a
CEX before sending the payout.

Pros:
● Easy to understand and use for beginners, streamlined interface.
● Reduces taxable events for clients.
● Lets of different tokens on many different chains.
● Able to mine with different algorithms (ETH, ETC, KApow, RandomX)

Cons:
● Fully centralized using CEX for payouts.
● Lack of transparency is regards to payouts (usually payouts are notably lower that

estimated earnings of pure ETH)
● Lack of transparency in regards to CEX used for swaps.
● Unable to see pool stats in the interface.
● Proprietary Mining software is inefficient not providing full hashrate.
● Only able to use one mining pool for service.

2 Miners (BTC or NANO payout)
2 miners is an ETH mining pool that allows for payouts in either BTC or NANO. The miner sets
up their mining software to mine to the 2 Miners pool and enters either a BTC, NANO, or ETH
address to be paid to them when they reach their payout threshold. 2 Miners then takes this
payout grouped with others once a day and sends it to a CEX and swaps it for the correct Coin
and then sends it to the miners address.

Pros:
● Alleviates high gas fees from receiving an ETH payout.
● Reduces taxable events for clients.
● No transaction fees for Nano payouts.

Cons:
● Fully centralized using CEX for payouts.
● While more transparent about swaps then UnMinable they still do not tell you what CEX

service they use for swaps.
● Only able to use one mining pool for service.



NiceHash (BTC Payouts Only)
NiceHash is a fully centralized hashrate rental service that offers mining of many coins including
ERGO but they only offer payouts in BTC and no other coin. To use their service someone
would download their software and register on their site. Run the software and let it calculate
what the most profitable coin is to mine before starting.

Pros:
● Reduces taxable events for clients (assuming they want a BTC payout in the end).
● Easy to understand and use for beginners, streamlined interface.

Cons:
● People can rent hashrate from NiceHash opening coins up to 51% attacks if someone

has the equity for a large enough rental.
● Lack of transparency in regards to CEX used for swaps.
● Spotty history of hacks.
● Frozen payouts in times of high sell pressure.
● Doubtful marketing slandering other mining software (Phoenix miner especially).



Protocol Spec
Protocol specification for dApp that enables Ergo miners to swap their miner profit payouts.
Follows EIP-6: https://github.com/ergoplatform/eips/blob/master/eip-0006.md

Stages
● GuapSwap Proxy Contract

Actions
● Generate ErgoDex Swap Box
● Refund

https://github.com/ergoplatform/eips/blob/master/eip-0006.md


Stage: GuapSwap Proxy Contract
In this stage, the miner has already given their proxy contract address to their mining pool. They
have received a payout to a box protected by the proxy contract.

Registers
● None

Hard-coded Values
● PK
● ErgoDexSwapSellContractSample
● GuapSwapServiceFeePercentageNum
● GuapSwapServiceFeePercentageDenom
● GuapSwapServiceFeeContract
● GuapSwapMinerFee
● MinErgoDexExecutionFee

Context Extension Values
● FeeNum
● QuoteId
● MinQuoteAmount
● BaseAmount
● DexFeePerTokenNum
● DexFeePerTokenDenom
● MaxMinerFee
● PoolNFT

Mandatory Stage Spending Conditions
● A valid swap box => check that the output swap box PropBytes match the ErgoDex

SampleContractPropBytes but with the updated constant values
● A valid ServiceFeeBox with the appropriate service fee
● Transaction signed by PK => implies a refund initiated

Actions/Spending Paths
● Generate ErgoDex Swap Box
● Refund



Action: Generate ErgoDex Swap Box
For this action, the miner chooses to follow through with swapping their payouts. A valid
ErgoDex swap box is created.

Data-Inputs
● PoolBox

Inputs
● ProxyContractBox

Outputs
● ErgoDexSwapBox
● MinerFeeBox
● ServiceFeeBox

Action Conditions
● A valid swap box => check that the output swap box PropBytes match the ErgoDex

SampleContractPropBytes but with the updated constant values
● A valid ServiceFeeBox with the appropriate service fee
● Transaction signed by PK => implies a refund initiated



Action: Refund
Instead of going through with swapping the payout profits, the miner chooses to obtain the
payout in ERG to their wallet, or spend the box via any other transaction.

Data-Inputs
● None

Inputs
● Proxy Contract Box

Outputs
● If refund initiated via application, then a refund box to the user’s wallet. Otherwise, the

user can spend the Proxy Contract Box in whatever transaction they want.

Action Conditions
● Transaction signed with PK



Protocol Diagrams


