1

Dexy - A Stablecoin Based On Algorithmic
Central Bank

kushti, scalahub
December 30, 2022

Abstract

In this paper, we consider a new stablecoin protocol design called Dexy.
The protocol is operating with two assets only (base currency and stable-
coin), and two mandatory components, namely, a reference market (in
form of a liquidity pool where anyone can trade base currency against
stable coins), and an algorithmic central bank, which is responsible for
new stablecoins issuance, and also for maintaining stablecoin peg in the
reference market.

Introduction

Algorithmic stablecoins is a natural extension of cryptocurrencies, trying to
solve problems with volatility of their prices by pegging stablecoin price to an
asset which price is considered to be more or less stable with time (e.g. gold).

Having an asset with a stable value could be useful in many scenarios, for

example:

e securing fundraising; a project can be sure that funds collected during

fundraising will have stable value in the mid- and long-term.

e doing business with predictable results. For example, a shop can be sure

that funds collected from sales will be about the same value when the shop
is ordering goods from warehouses (otherwise, the shop may go bankrupt
if its margin is not that big to cover exchange rate fluctuations).

e shorting: when cryptocurrency prices are high, it is desirable for investors

to rebalance their portfolio by increasing exposure to fiat currencies (or
traditional commodities). However, as fiat currencies and centralized ex-
changes impose significant risks, it would be better to buy fiat and com-
modity substitues in form of stablecoins on decentralized exchanges.

e lending and other decentralized finance applications. Stability of collateral

value is critical for many applications.



Algorithmic stablecoins are different from centralized stablecoins, such as
USDT and USDC, for which there is a trusted party doing conversions to a
pegged asset. In case of an algorithmic stablecoin, the pegging is done via
rebasement of total supply (as in Ampleforth etc), or via imitating a trusted
party which holds reserves and doing market interventions when it is needed for
getting exchange rate back to the peg. Imititating the trusted party is usually
done by allowing anyone on the blockchain creating over-collateralized financial
instruments, such as collateralized debt positions (as in DAI) or zero-coupon
bonds (as in the Yield protocol), or buy having reserve asset (as in Djed), or by
issuing stabilizing financial instruments in case of depeg (as in Neutrino).

. add links to the paragraph above

In this work we present Dexy, a stablecoin protocol where an algorithmic
central bank performing interventions in case of depeg is presented explicitly as
a contract with few predefined rules. The bank is trying to stabilize stablecoin
value on the markets, using a liquidity pool as a reference market, by providing
stablecoin liquidity, when stablecoin price is over the peg, or injecting base
currency from its reserves, when the stablecoin is under the peg. In extreme
case, when bank reserves are depleted and stablecoin is still under the peg, its
value is restored by extracting stablecoins from the liquidity pool (to inject back
when price will go above the peg again). In some aspects Dexy could resemble
Fei or Gyroscope. : make comparison subsection

2 Dexy Design in General

Unlike popular algorithmic stablecoins based on two tokens, Dexy is based on
one token but two protocols. In the first place, there is reference market (done
as on-chain protocol, such as automated market maker), where trading of Dexy
vs the base currency (ERG) happens. In the second place, if market price is
way too different from a target price (as reported by a trusted oracle), there
is an algorithmic central bank which is doing interventions in order to readjust
the market price (so make it closer to the oracle’s one). The central bank can
also mint new Dexy tokens by selling them for ERG. The bank is using reserves
in ERG it is buying for interventions then.

As a simple solution for the reference market, we are using constant-product
Automated Market Maker (CP-AMM) liquidity pool, similar to Spectrum and
UniSwap. The pool has ERG on one side and Dexy on another. For CP-AMM
pool, multiplication of ERG and Dexy amounts before and after a trade should
be preserved, so e xu = ¢’ *u/, where e and u are amounts of ERG and Dexy in
the pool before the trade, and ¢’ and u’ are amounts of ERG and Dexy in the
pool after the trade, correspondingly. As for any CP-AMM pool, it is possible
to put liquidity into the pool, and remove liquidity from it, however, there are
some limitations here we are going to uncover further.

The bank has two basic operations. It can mint new stablecoin tokens per
request, using trusted oracle’s price, by accepting ERG in its reserves. It also can
intervene into markets by providing ERG from reserves when needed (namely,



when price in the pool ¥ is significantly different from price on external markets
p which reported by oracle).

Now we are going to consider how to put restrictions and design rules for
the system to ensure stable pricing for stablecoin tokens.

3 Notation

We start by introducing notation:

e T - period before intervention starts. After one intervention the bank can
start another one only after 7' time units passed.

e p - price reported by the oracle at the moment (for example, 20 USD per
ERG)

e s - price which the bank should stand in case of price crash. For example,
we can assume that s = 4 (so if p is 20 USD per ERG, then s is 5 USD per
ERG, means the bank needs to have enough reserves to save the markets

when the price is suddenly crashing from 20 to 5 USD per ERG)

¢ R - ratio between p and s, R = £

olefs
]
*
3

e 7 - ratio between p, and price in the pool, which is ¥, thus r =

d

e ¢ - amount of ERG in the liquidity pool
e u - amount of stablecoin in the liquidity pool

e O - amount of stablecoin outside the liquidity pool. The distribution in
O is not known for the Dexy protocol, but the bank can easily store how
many stablecoin tokens were minted and then get O by deducting u from
it.

e I/ - amount of ERG in the bank.

4 Worst Case Scenario and Bank Reserves

The bank is doing interventions when the situation is far from normal in the
markets, and enough time passed for markets to stabilize themselves with no
interventions. In our case, the bank is doing interventions based on stablecoin
price in the liquidity pool in comparison with oracle provided price. The bank’s
intervention then is about injecting its ERG reserves into the pool.

First of all, let’s assume that the oracle price crashed from p to s sharply and
stands there, and before the crash there were e of ERG and w of stablecoin in the
liquidity pool, with pool’s price being p. The worst case then is when no liqudity
put into the pool during the period 7. With large enough 7" and large enough
R this assumption is not very realistic probably: some traders will buy ERGs
with their stablecoins anyway, price is failing with swings where traders could



mint stablecoins thus increasing ERG bank reserves, etc. However, it would be
reasonable to consider worst-case scenario, then in the real world Dexy will be
even more durable than in theory.

In this case, the bank must intervene after 7' units of time, as the price
differs significantly, and restore the price in the pool, so set it to s. We denote
amounts of ERG and stablecoin in the pool after the intervention as ¢’ and v/,
respectively. Then:

e exu=c¢c xu
e as the bank injects E; ergs into the pool, ¢/ = e+ F;

o z—::s,thusu’:s*(e—i—El)

exu

e from above, F; =

So by injecting E; ERG, the bank recovers the price. However, this is not
enough, as now there are O stablecoin units which can be injected into the pool
from outside. Again, in the real life it is not realistic to assume that all the O
stablecoin would be injected, as some of them are simply lost, some would be
kept to buy cheap ERG at the bottom (we remind that stablecoin often used
as a bet for ERG price decline), etc. However, we need to assume worst-case
scenario again. We also unrealistically assume that all the O tokens are being
sold in very small batches not significantly affecting price in the pool, and after
each batch seller of a new batch is waiting for a bank intervention to happen
(so for T units of time), and sells only after the intervention. In this case all
the O tokens are being sold at price close to s, so the bank should have about
Ey = % ERGs in reserve to buy the tokens back.

Summing up F; and Es, we got ERG reserves the bank should have to be
ready for worst-case scenario: F,, = F1 + Fy = \/<* —e + %

It is simple to see why this scenario is worst-case for the bank. In this
scenario, the bank (and only the bank) is buying all the O of external stablecoin
at the worst possible price s, and also set the price by burning its own reserves
only.

5 Bank and Pool Rules

Based on needed reserves for worst-case scenario estimation, we can consider
minting rules accordingly. Similarly to SigUSD (a Djed instantiation), we can,
for example, target for security in case of 4x price drop, so to consider R =
P = 4, and allow to mint stablecoin while there are enough, so not less than
FE.,, ERG in reserves. However, in this case most of time stablecoin would be
non-mintable, and only during moments of ERG price going up significantly it
will be possible to mint Dexy. As worst-case scenario is based on unrealistic
assumptions, unlikely a realistic protocol can be built on top of it.

Thus we leave worst-case scenario for UI, so dapps working with the Dexy
may show e.g. collateralization for the worst-case scenario. Having on-chain



data analysis, more precise estimations of reserve quality can be made (by con-
sidering stablecoins locked in DeFi protocols, likely forgotten, etc).

We allow for cautios minting. That is, we whether allow minting when
oracle price is above pool’s price (in this way the bank is providing liquidity for
arbitrage when stablecoin pice is above the peg), or we allow to mint a little bit
(per some time period) when liquidity pool is in good shape. In details, we have
two following minting operations, with minting price being the oracle’s price p:

e Arbitrage mint: if price reported by the oracle is higher than in the pool,
i.e. p> 2, we allow to print enough stablecoin tokens to bring the price
to p. That is, the bank allows to mint up to §,, = /p * € x u — u stablecoin

by accepting up to . = %“ ERGs into reserves.

To instantiate the rule, we can allow for arbitrage minting if the price p
is more than % by at least 1% for time period To,p (e.g. 1 hour), also,
the bank is charging 0.5% fee for the operation. After arbitrage mint it is
not possible to do another one within 30 minutes (to prevent aggressive
liquidity minting via chained transactions etc).

o Free mint: we allow to mint up to 155 stablecoins within time period T'fye..
To instantiate the rule, we propose to allow for free mint if 0.98 < r < 1.02.
Minting fee in this case is also 0.5%. We propose to set Tyree to 1 day,
then bank reserves can grow by 1% of LP volume per day when the peg
is okay..

In addition to minting actions, which increase bank reserves, we define fol-
lowing two actions which decrease them:

e Intervention: if price reported by the oracle is lower than one in the pool
by significantly enough margin, i.e. 2 is less than some constant which is
hard-wired into the protocol, then the bank is providing ERGs. to restore
the price. To instantiate the rule, we propose to allow the bank to intervene
if r <= 0.98 for time period T;,; = 1 day. During intervention tracker
is reset, so another intervention will be after T;,; = 1 day at least. The
bank is getting price to 99.5% of the oracle price max, but also spending
no more than 2% of its reserves for that.

o Payout: if bank has too much reserves, so E > E,,, we can allow for
paying excess reserves out. There could be different ways to do this. For
example, extra reserves can be paid to holders of liquidity pool’s LP to-
kens via staking (then LP participant has potential source of additional
revenue).

We also state following rules for the liquidity pool (which, otherwise, acts as
ordinary CP-AMM liquidity pool):

e Stopping withdrawals: if r is below some threshold, withdrawals are
stopped, so only trades are possible. To instantiate the rule, we propose
to stop withdrawals immediately if r <= 0.98.



o Second stabilization mechanism: what if the bank is out of reserves, but
stablecoin is still below the peg? In this case we restore price in the pool
by removing liquidity, and there are two possible options here:

1. Burn: if the bank if empty, and r is below some threshold, it is
allowed to burn stablecoins in the pool. To instantiate the rule, we
propose to burn stablecoin if » <= 0.95 for time period Tpyurn. Thurn
must be quite big, e.g. 1 week. We burn enough to return to the
state of stopped withdrawals, so to r = 0.98. After burning the
tracker is reset, so another burn will be done sfter Ty, at least.

2. Extract for the future: if the bank is empty and r is below some
threshold, it is allowed to extract stablecoins from the pool and lock
by a contract which is releasing stablecoins in the future when sta-
blecoin price is above the peg. To instantiate the rule, we propose
to extract stablecoin if r <= 0.95 for time period Ty (so the same
as in burn). To prioritize extracted funds over arbitrage mint, we do
not have delay in releasing contract. We burn enough to return to
the state of stopped withdrawals, so to r = 0.98. After extraction the
tracker is reset, so another burn will be done sfter Ty, at least.

In addition, we introduce 2% redemption fee to avoid excessive liquidity
hopping.

6 Stability

With second stabilization mechanism (burning or extraction) in place, the price
in the reference market will be eventually stabilized. However, for liquidity
holders burning is painful, extraction not so but still not desirable, thus Dexy
protocol is trying to avoid it (unlike other protocols, such as Gyroscope or Fei,
where redemption rate fails below 1 immediately as collateralization falls under
100%), by giving markets time to self-stabilize, and then doing interventions.
This could mean slower stabilization, in comparison with other protocols. Slower
stabilization helps the bank to play with possible adversaries in the environment
with information assymetry (humans always have access to more information
than algorithmic bank, with more flexible decision making as well).

Dexy is also cautios about minting new stablecoins, which could mean slow
growth of number of tokens issued. This could be inconvient, especially for big
players, but the protocol is focused on stability in the first place.

Please note, that liquidity pool is disincentivizing massive bank runs due
to its constant-product nature. Actually, for the bank massive bank runs are
simpler for bank to resolve, in comparison with slow drain as in worst-case
scenario.



7 Implementation

7.1 Bank Contract

: put contracts here

8 Simulations

We made simulations, you can find them in Dexy repository. : finish

9 Trust Assumptions

It is important to explicitly state assumptions the protocol is based on, so a
user can choose whether to trust it or not.

o Oracle: the biggest trust issue in the protocol is oracle delivering gold
price. This trust issue is unavoidable but can be relaxed by using not a
single entity but a federation of oracles with an average price (after noise
filtering) to be delivered to the Dexy central bank.

e No governance: unlike most of stablecoin protocols, we do not consider
governance, as usually it is another trust issue. Real world instantia-
tions can consider governance, we suppose that such instantiations should
clearly inform about governance-related trust assumptions.

Acknowledgments

Authors would like to thank Ile for his inspiring forum posts.

DexyGold And Its Payout Token

As a first instantiation for the Dexy protocol, we consider DexyGold, gold-
pegged and ERG-backed stablecoin.

It would be desirable to remove excessive reserves, as in case of too much
ERG liquidity locked, the underlying Ergo blockchain economy could be dam-
aged. So we will implement ERG payouts in case of excessive reserves, and they
will be done to holders of the DexyGold payout token.

DexyGold payout tokens will be distributed across developers and partners,
some part of it will be given to miners (via a GetBlok pool), and also it will be
able to get rewarded in payout tokens by locking reference pool’s LP tokens in
a staking contract. Distribution would be like (not finalized!):

e dev team - 15%

e Spectrum - 10%



ecosystem devs (exchanges, wallets, payout distribution and staking solu-
tions providers) - 30%

LP tokens staking rewards - 25%
miners - 10%
Sigmanauts Treasury - 5%

Ergo Foundation Treasury - 5%

Please note that revenue is not guaranteed with the payout token. Also, it
does not give any governance rights, as there is no governance in the protocol,
it is run as purely autonomous code-controlled entity.

Payout tokens will not be sold to the public, or sold at all. However, no
one can prevent second market formation (e.g. liquidity pool appeared on Spec-
trum).



	Introduction
	Dexy Design in General
	Notation
	Worst Case Scenario and Bank Reserves
	Bank and Pool Rules
	Stability
	Implementation
	Bank Contract

	Simulations
	Trust Assumptions

